Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 746
Filtrar
1.
J Korean Neurosurg Soc ; 67(3): 364-375, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720546

RESUMO

OBJECTIVE: Kinesin family member C1 (KIFC1), a non-essential kinesin-like motor protein, has been found to serve a crucial role in supernumerary centrosome clustering and the progression of several human cancer types. However, the role of KIFC1 in glioma has been rarely reported. Thus, the present study aimed to investigate the role of KIFC1 in glioma progression. METHODS: Online bioinformatics analysis was performed to determine the association between KIFC1 expression and clinical outcomes in glioma. Immunohistochemical staining was conducted to analyze the expression levels of KIFC1 in glioma and normal brain tissues. Furthermore, KIFC1 expression was knocked in the glioma cell lines, U251 and U87MG, and the functional roles of KIFC1 in cell proliferation, invasion and migration were analyzed using cell multiplication, wound healing and Transwell invasion assays, respectively. The autophagic flux and expression levels matrix metalloproteinase-2 (MMP2) were also determined using imaging flow cytometry, western blotting and a gelation zymography assay. RESULTS: The results revealed that KIFC1 expression levels were significantly upregulated in glioma tissues compared with normal brain tissues, and the expression levels were positively associated with tumor grade. Patients with glioma with low KIFC1 expression levels had a more favorable prognosis compared with patients with high KIFC1 expression levels. In vitro, KIFC1 knockdown not only inhibited the proliferation, migration and invasion of glioma cells, but also increased the autophagic flux and downregulated the expression levels of MMP2. CONCLUSION: Upregulation of KIFC1 expression may promote glioma progression and KIFC1 may serve as a potential prognostic biomarker and possible therapeutic target for glioma.

2.
Nutrients ; 16(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612961

RESUMO

Sodium, although essential for life, is a key factor in changes in vascular function and cardiovascular disease when consumed in excess. Sarcocornia spp., a halophyte plant with many nutritional benefits, presents itself as a promising substitute for the consumption of purified salt. Matrix metalloproteinases (MMPs) 2 and 9 are widely studied due to their action in physiological processes and as biomarkers at the diagnostic level due to their increased expression in inflammatory processes. This study aimed to evaluate whether replacing salt with Sarcocornia perennis (S. perennis) powder in healthy young people leads to an improvement in biochemical profiles and the attenuation of MMP-2 and MMP-9 activity. In the present study, 30 participants were randomized into a control group that consumed salt and an intervention group that replaced salt with powdered S. perennis. The evaluation of the biochemical parameters was carried out by the spectrophotometry method, and the evaluation of MMP activity was carried out by zymography. A significant decrease was observed in the intervention group in total cholesterol, high-density lipoprotein cholesterol (HDL-c), and creatinine (p-value ≤ 0.05), along with lower but not significantly different mean values of triglycerides. Regarding MMP activity after the intervention, a lower mean value was observed for MMP-9 activity, with there being higher mean values for MMP-2 activity, both with p-values ≥ 0.05. The results confirmed that the consumption of S. perennis is a beneficial choice for health regarding the lipid profile. The evaluation of MMP activity indicated the potential of S. perennis in the regulation of MMP-9 activity in healthy individuals, along with the need for the further study of these proteases in individuals with pathologies.


Assuntos
Gelatinases , Metaloproteinase 9 da Matriz , Humanos , Adolescente , Metaloproteinase 2 da Matriz , Cloreto de Sódio , Cloreto de Sódio na Dieta , HDL-Colesterol , Endopeptidases
3.
World J Gastrointest Oncol ; 16(4): 1547-1563, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660652

RESUMO

BACKGROUND: Increasing data indicated that long noncoding RNAs (lncRNAs) were directly or indirectly involved in the occurrence and development of tumors, including hepatocellular carcinoma (HCC). Recent studies had found that the expression of lncRNA HAND2-AS1 was downregulated in HCC tissues, but its role in HCC progression is unclear. Ultrasound targeted microbubble destruction mediated gene transfection is a new method to overexpress genes. AIM: To study the role of ultrasound microbubbles (UTMBs) mediated HAND2-AS1 in the progression of HCC, in order to provide a new reference for the treatment of HCC. METHODS: In vitro, we transfected HAND2-AS1 siRNA into HepG2 cells by UTMBs, and detected cell proliferation, apoptosis, invasion and epithelial-mesenchymal transition (EMT) by cell counting kit-8 assay, flow cytometry, Transwell invasion assay and Western blotting, respectively. In addition, we transfected miR-837-5p mimic into UTMBs treated cells and observed the changes of cell behavior. Next, the UTMBs treated HepG2 cells were transfected together with miR-837-5p mimic and tissue inhibitor of matrix metalloproteinase-2 (TIMP2) overexpression vector, and we detected cell proliferation, apoptosis, invasion and EMT. In vivo, we established a mouse model of subcutaneous transplantation of HepG2 cells and observed the effect of HAND2-AS1 silencing on tumor formation ability. RESULTS: We found that UTMBs carrying HAND2-AS1 restricted cell proliferation, invasion, and EMT, encouraged apoptosis, and HAND2-AS1 silencing eliminated the effect of UTMBs. Additionally, miR-873-5p targets the gene HAND2-AS1, which also targets the 3'UTR of TIMP2. And miR-873-5p mimic counteracted the impact of HAND2-AS1. Further, miR-873-5p mimic solely or in combination with pcDNA-TIMP2 had been transformed into HepG2 cells exposed to UTMBs. We discovered that TIMP2 reversed the effect of miR-873-5p mimic caused by the blocked signalling cascade for matrix metalloproteinase (MMP) 2/MMP9. In vivo results showed that HAND2-AS1 silencing significantly inhibited tumor formation in mice. CONCLUSION: LncRNA HAND2-AS1 promotes TIMP2 expression by targeting miR-873-5p to inhibit HepG2 cell growth and delay HCC progression.

4.
J Proteome Res ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647137

RESUMO

Proteases are enzymes that induce irreversible post-translational modifications by hydrolyzing amide bonds in proteins. One of these proteases is matrix metalloproteinase-2 (MMP-2), which has been shown to modulate extracellular matrix remodeling and intracellular proteolysis during myocardial injury. However, the substrates of MMP-2 in heart tissue are limited, and lesser known are the cleavage sites. Here, we used degradomics to investigate the substrates of intracellular MMP-2 in rat ventricular extracts. First, we designed a novel, constitutively active MMP-2 fusion protein (MMP-2-Fc) that we expressed and purified from mammalian cells. Using this protease, we proteolyzed ventricular extracts and used subtiligase-mediated N-terminomic labeling which identified 95 putative MMP-2-Fc proteolytic cleavage sites using mass spectrometry. The intracellular MMP-2 cleavage sites identified in heart tissue extracts were enriched for proteins primarily involved in metabolism, as well as the breakdown of fatty acids and amino acids. We further characterized the cleavage of three of these MMP-2-Fc substrates based on the gene ontology analysis. We first characterized the cleavage of sarco/endoplasmic reticulum calcium ATPase (SERCA2a), a known MMP-2 substrate in myocardial injury. We then characterized the cleavage of malate dehydrogenase (MDHM) and phosphoglycerate kinase 1 (PGK1), representing new cardiac tissue substrates. Our findings provide insights into the intracellular substrates of MMP-2 in cardiac cells, suggesting that MMP-2 activation plays a role in cardiac metabolism.

5.
J Nanobiotechnology ; 22(1): 209, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664830

RESUMO

BACKGROUND: Vasculogenic mimicry (VM), when microvascular channels are formed by cancer cells independent of endothelial cells, often occurs in deep hypoxic areas of tumors and contributes to the aggressiveness and metastasis of triple-negative breast cancer (TNBC) cells. However, well-developed VM inhibitors exhibit inadequate efficacy due to their low drug utilization rate and limited deep penetration. Thus, a cost-effective VM inhibition strategy needs to be designed for TNBC treatment. RESULTS: Herein, we designed a low-intensity focused ultrasound (LIFU) and matrix metalloproteinase-2 (MMP-2) dual-responsive nanoplatform termed PFP@PDM-PEG for the cost-effective and efficient utilization of the drug disulfiram (DSF) as a VM inhibitor. The PFP@PDM-PEG nanodroplets effectively penetrated tumors and exhibited substantial accumulation facilitated by PEG deshielding in a LIFU-mediated and MMP-2-sensitive manner. Furthermore, upon exposure to LIFU irradiation, DSF was released controllably under ultrasound imaging guidance. This secure and controllable dual-response DSF delivery platform reduced VM formation by inhibiting COL1/pro-MMP-2 activity, thereby significantly inhibiting tumor progression and metastasis. CONCLUSIONS: Considering the safety of the raw materials, controlled treatment process, and reliable repurposing of DSF, this dual-responsive nanoplatform represents a novel and effective VM-based therapeutic strategy for TNBC in clinical settings.


Assuntos
Dissulfiram , Neoplasias Pulmonares , Metaloproteinase 2 da Matriz , Nanopartículas , Neovascularização Patológica , Neoplasias de Mama Triplo Negativas , Dissulfiram/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Metaloproteinase 2 da Matriz/metabolismo , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Nanopartículas/química , Neovascularização Patológica/tratamento farmacológico , Camundongos Endogâmicos BALB C , Camundongos Nus , Reposicionamento de Medicamentos , Ondas Ultrassônicas , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico
6.
Biomed Environ Sci ; 37(2): 146-156, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582977

RESUMO

Objective: This study aimed to explore the association of single nucleotide polymorphisms (SNP) in the matrix metalloproteinase 2 (MMP-2) signaling pathway and the risk of vascular senescence (VS). Methods: In this cross-sectional study, between May and November 2022, peripheral venous blood of 151 VS patients (case group) and 233 volunteers (control group) were collected. Fourteen SNPs were identified in five genes encoding the components of the MMP-2 signaling pathway, assessed through carotid-femoral pulse wave velocity (cfPWV), and analyzed using multivariate logistic regression. The multigene influence on the risk of VS was assessed using multifactor dimensionality reduction (MDR) and generalized multifactor dimensionality regression (GMDR) modeling. Results: Within the multivariate logistic regression models, four SNPs were screened to have significant associations with VS: chemokine (C-C motif) ligand 2 (CCL2) rs4586, MMP2 rs14070, MMP2 rs7201, and MMP2 rs1053605. Carriers of the T/C genotype of MMP2 rs14070 had a 2.17-fold increased risk of developing VS compared with those of the C/C genotype, and those of the T/T genotype had a 19.375-fold increased risk. CCL2 rs4586 and MMP-2 rs14070 exhibited the most significant interactions. Conclusion: CCL2 rs4586, MMP-2 rs14070, MMP-2 rs7201, and MMP-2 rs1053605 polymorphisms were significantly associated with the risk of VS.


Assuntos
Metaloproteinase 2 da Matriz , Polimorfismo de Nucleotídeo Único , Humanos , Estudos de Casos e Controles , Estudos Transversais , Predisposição Genética para Doença , Genótipo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Análise de Onda de Pulso , Transdução de Sinais
7.
Talanta ; 274: 126079, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608631

RESUMO

Simple and low-cost biosensing solutions are suitable for point-of-care applications aiming to overcome the gap between scientific concepts and technological production. To compete with sensitivity and selectivity of golden standards, such as liquid chromatography, the functionalization of biosensors is continuously optimized to enhance the signal and improve their performance, often leading to complex chemical assay development. In this research, the efforts are made on optimizing the methodology for electrochemical reduction of graphene oxide to produce thin film-modified gold electrodes. Under the employed specific conditions, 20 cycles of cyclic voltammetry (CV) are shown to be optimal for superior electrical activation of graphene oxide into electrochemically reduced graphene oxide (ERGO). This platform is further used to develop a matrix metalloproteinase 2 (MMP-2) biosensor, where specific anti-MMP2 aptamers are utilized as a biorecognition element. MMP-2 is a protein which is typically overexpressed in tumor tissues, with important roles in tumor invasion, metastasis as well as in tumor angiogenesis. Based on impedimetric measurements, we were able to detect as low as 3.32 pg mL-1 of MMP-2 in PBS with a dynamic range of 10 pg mL-1 - 10 ng mL-1. Further experiments with real blood samples revealed a promising potential of the developed sensor for direct measurement of MMP-2 in complex media. High specificity of detection is demonstrated - even to the closely related enzyme MMP-9. Finally, the potential of reuse was demonstrated by signal restoration after experimental detection of MMP-2.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Grafite , Metaloproteinase 2 da Matriz , Grafite/química , Metaloproteinase 2 da Matriz/sangue , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/análise , Aptâmeros de Nucleotídeos/química , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Oxirredução , Limite de Detecção , Eletrodos , Ouro/química
8.
Heliyon ; 10(6): e27694, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509956

RESUMO

Background: Bronchial asthma is a persistent inflammatory respiratory condition that restricts the passage of air and causes hyperresponsiveness. Chronic asthma can be classified into three categories: mild, moderate, and severe. Remodeling took place as the extracellular matrix accumulated in the walls of the airways. Inflammation occurs as a result of the damage caused by matrix metalloproteinase-2 (MMP-2) to basement membrane type IV collagen. The severity of asthma may be associated with miR-196a2. The objective of our study was to investigate the underlying mechanisms and clinical relevance of miR-196a2 and MMP-2 serum levels in relation to the severity of asthma. Methods: This study recruited 85 controls and 95 asthmatics classified as mild, moderate, or severe. Expression of miR-196a2 was measured by quantitative reverse transcriptase PCR. Using the enzyme-linked immunosorbent assay (ELISA), MMP-2, IL-6, and total immunoglobulin E (IgE) levels in the serum of asthmatics of various grades were compared to a control group. MMP-2's diagnostic and prognostic potential was determined using ROC curve analysis. This study also measured blood Eosinophils and PFTs. We examined MMP-2's connections with IgE, blood Eosinophils, and PFTs. Results: The current investigation found that miR-196a2 expression was significantly higher in the control group than in asthmatic patients as a whole. The study found that severe asthmatics had higher MMP-2, IL-6, and IgE serum levels than healthy controls. We identified the MMP-2 serum concentration cutoff with great sensitivity and specificity. Significant relationships between MMP-2 serum level and miR-196a2 expression in the patient group with severe asthmatics were found. The MMP-2, IL-6, and IgE serum levels were considerably higher in mild, moderate, and severe asthmatics than controls. The miR-196a2 expression and MMP-2 serum concentration correlated positively with IgE and blood eosinophils % and negatively with all lung function tests in the asthmatic patient group.Conclusion: the study revealed that the elevated miR-196a2 expression and serum concentration of MMP-2, IL-6, and IgE associated with elevated blood eosinophils % is associated with pathophysiology and degree of asthma severity. The miR-196a2 expression and MMP-2 serum concentration have a promising diagnostic and prognostic ability in bronchial asthma.

9.
Anticancer Res ; 44(4): 1465-1473, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537953

RESUMO

BACKGROUND/AIM: Uterine leiomyosarcoma (uLMS) is a rare, highly malignant, and invasive cancer, with early metastasis. Mismatch repair (MMR) proteins and matrix metalloproteinases (MMPs) are associated with the occurrence, proliferation, and invasion of most malignant cancers; however, their abnormal expression in uLMS remains poorly clarified. PATIENTS AND METHODS: Immunohistochemistry was performed to assess MMR protein and MMP2/9 expression as well as Ki67 marker proliferation in benign and malignant uterine smooth muscle tumors. Data from 28 cases of uterine leiomyoma and 31 cases of uLMS were analyzed. RESULTS: Tumor tissues from patients with uLMS had higher expression levels of MMP2 (p<0.001), MMP9 (p<0.05), and Ki67 (p<0.001) than those from patients with uterine leiomyoma; MMR protein expression showed the opposite trend (p<0.05). uLMS proliferation and metastasis correlated positively with MMP2 (p=0.012 and 0.015, respectively) but negatively with MMP9 (p=0.021 and 0.04, respectively). MMR protein expression did not correlate with uLMS proliferation or metastasis (p>0.05). CONCLUSION: Expression levels of MMP2 and MMP9 were upregulated in malignant uLMS tumors when compared with those in benign uterine leiomyoma tumors. Increased MMP2 expression might promote uLMS invasion and migration. MMP9 overexpression might be related to uLMS occurrence; however, it protects against uLMS invasion and metastasis. MMP2 and MMP9 may be potential predictors of uLMS cell proliferation, metastasis, and prognosis. These findings could be helpful in developing new strategies for diagnosing and treating uLMS.


Assuntos
Leiomioma , Leiomiossarcoma , Neoplasias Pélvicas , Neoplasias Uterinas , Feminino , Humanos , Leiomiossarcoma/patologia , Metaloproteinase 9 da Matriz , Metaloproteinase 2 da Matriz , Antígeno Ki-67 , Neoplasias Uterinas/patologia , Leiomioma/patologia
10.
Tuberculosis (Edinb) ; 146: 102501, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490030

RESUMO

Matrix metalloproteinases (MMPs) have a role in driving neuroinflammation in infectious as well as non-infectious diseases; however, recent reports have potentiated the role of microRNAs in regulating MMPs at post-transcriptional levels, leading to dysregulation of crucial MMP functions like tissue remodelling, blood brain barrier integrity, etc. In present study, microRNAs regulating MMPs (MMP2 and MMP3) were selected from database search followed by literature support. Expression of these microRNAs i.e., hsa-miR-495-3p, hsa-miR-132-3p and hsa-miR-21-5p was assessed by RT-PCR and the protein levels of MMPs were assessed by ELISA in the cerebrospinal fluid (CSF) of tuberculous meningitis (TBM) patients, healthy controls (HC) and non-infectious neuroinflammatory disease (NID) patients. The expression of hsa-miR-495-3p and hsa-miR-132-3p showed downregulation in TBM while hsa-miR-21-5p was overexpressed as compared to healthy controls. Moreover, MMP levels were found to be deranged with a significant increase in MMP3 levels in the TBM and NID patients compared to HC group. These observations highlight dysregulated microRNAs (hsa-miR-495-3p, hsa-miR-21-5p and hsa-miR-132-3p) levels might impair the levels of MMPs (MMP2 and MMP3) leading to neuroinflammation in TBM and NID population. These findings can further be applied to target these microRNAs for developing newer treatment modalities for better complication management.


Assuntos
MicroRNAs , Mycobacterium tuberculosis , Tuberculose Meníngea , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 3 da Matriz/genética , Tuberculose Meníngea/genética , Doenças Neuroinflamatórias , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo
11.
Int J Biol Macromol ; 262(Pt 2): 130043, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340921

RESUMO

Matrix metalloproteinase-2 (MMP-2)-responsive nanodrug vehicles have garnered significant attention as antitumor drug delivery systems due to the extensive research on matrix metalloproteinases (MMPs) within the tumor extracellular matrix (ECM). These nanodrug vehicles exhibit stable circulation in the bloodstream and accumulate specifically in tumors through various mechanisms. Upon reaching tumor tissues, their structures are degraded in response to MMP-2 within the ECM, resulting in drug release. This controlled drug release significantly increases drug concentration within tumors, thereby enhancing its antitumor efficacy while minimizing side effects on normal organs. This review provides an overview of MMP-2 characteristics, enzyme-sensitive materials, and current research progress regarding their application as MMP-2-responsive nanodrug delivery system for anti-tumor drugs, as well as considering their future research prospects. In conclusion, MMP-2-sensitive drug delivery carriers have a broad application in all kinds of nanodrug delivery systems and are expected to become one of the main means for the clinical development and application of nanodrug delivery systems in the future.


Assuntos
Nanopartículas , Neoplasias , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Portadores de Fármacos/uso terapêutico
12.
Molecules ; 29(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398530

RESUMO

Endometriosis is a common gynecological condition with a complex physio-pathological background. This study aimed to assess the role of Rubus idaeus leaf extract (RiDE) as a potential therapeutic agent in reducing the size of the endometriotic lesions and modulate the plasma expression of MMP-2, MMP-9, and TGF-ß1. The endometriotic lesions were induced in a rat model by the autologous transplant of endometrium. Thirty-six female rats, Wistar breed, with induced endometriosis, were divided into four groups and underwent treatment for 28 days. The CTRL group received 0.5 mL/day of the vehicle; the DG group received 1 mg/kg b.w./day dienogest; the RiDG group received 0.25 mL/kg b.w./day RiDE and the D+RiDG group received 1 mg/kg b.w./day dienogest and 0.25 mL/kg b.w./day RiDE, respectively. Rats' weight, endometriotic lesion diameter and grade, and plasma levels of MMP-2, MMP-9, and TGF-ß1 were assessed before and after treatment. The administration of RiDE in association with dienogest vs. dienogest determined a lower weight gain and a reduction in diameter of the endometriotic lesions. RiDE administration restored MMP2 and MMP9 plasma levels to initial conditions. Rubus idaeus extract may help in reducing dienogest-associated weight gain, lower the size of endometriotic lesions, and have anti-inflammatory effects through MMP2 and MMP9 reduction.


Assuntos
Endometriose , Rubus , Humanos , Ratos , Feminino , Animais , Endometriose/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Rubus/metabolismo , Fator de Crescimento Transformador beta1 , Polifenóis/uso terapêutico , Ratos Wistar , Melhoramento Vegetal , Aumento de Peso
13.
Biochem Biophys Rep ; 37: 101609, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38205188

RESUMO

Background: High-molecular weight heparin (HMWH), a molecule extensively used as an anticoagulant, shows concentration-dependent angiogenic and anti-angiogenic potential. So far, no studies have reported the interactive potential of HMWH with various pro-angiogenic growth factors under physiological conditions. Haence, we aimed to find the impact of major pro-angiogenic growth factors under HMWH induced angiogenesis. Methods: Chicken Chorioallantoic Membranes (CAMs) are incubated with various concentrations of HMWH. Semiquantitative PCR method was implemented to measure the changes in the transcription level of pro-angiogenic growth factors. The scanning electron microscopic technique is applied to find the morphological changes in CAM. Molecular docking and molecular dynamics simulation studies using NAMD and CHARMM force field discerned the heparin-binding mode with the pro-angiogenic growth factors. Results: HMWH can enhance the transcription level of major pro-angiogenic growth factors, significantly impacting FGF2 under 100 µM concentration. The in-silico analysis reveals that HMWH shows the highest binding affinity with FGF2. Further, molecular dynamics and interaction studies using 1 kDa Heparin against FGF2 showed that the former binds stably with the latter due to a strong salt bridge formation between the sulfate groups and arginine residues (ARG 119 and ARG109). Conclusion: The combined experimental and in-silico analysis results reveal that HMWH can interact with pro-angiogenic growth factors under micromolar concentration while inducing angiogenesis. This observation further supports the therapeutic benefits of HMWH as an angiogenic factor under such low concentration. This technique is used to replenish the blood supply to chronic wounds to speed healing and prevent unnecessary amputations.

14.
Biosystems ; 235: 105103, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123060

RESUMO

OBJECTIVE: Matrix metalloproteinase-2 (MMP2) plays a significant role in cleaving extracellular matrix components, leading to many cancer cells' progression and invasion behavior. Therefore, MMP2 inhibition may hold promise for cancer treatment. Anthraquinones have shown antineoplastic effects, some of which have been used in clinical practice as anticancer drugs. This study used a computational drug discovery approach to assess the possible inhibitory effects of selected anthraquinones on MMP2. The results were then compared with that of Captopril, which was considered a standard drug. METHODS: This study used the AutoDock 4.0 tool to evaluate the binding affinity of 21 anthraquinones to the MMP2 catalytic domain. The most favorable scores based on the Gibbs free binding energy scores were given to the highest-ranked ligands. The Discovery Studio Visualizer tool illustrated interactions between MMP2 residues and top-ranked anthraquinones. RESULTS: A total of 12 anthraquinones were identified with ΔGbinding scores less than - 10 kcal/mol. Pulmatin (Chrysophanol-8-glucoside) was the most potent MMP2 inhibitor, with a ΔGbinding score of - 12.91 kcal/mol. This anthraquinone was able to restrict MMP2 activity within a picomolar range. CONCLUSION: MMP2 inhibition by anthraquinones, notably Pulmatin, may be a useful therapeutic approach for cancer treatment.


Assuntos
Antraquinonas , Antineoplásicos , Metaloproteinase 2 da Matriz , Inibidores de Metaloproteinases de Matriz , Antraquinonas/farmacologia , Antraquinonas/química , Antraquinonas/metabolismo , Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia
15.
Cancer Rep (Hoboken) ; : e1946, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064181

RESUMO

BACKGROUND: Doxorubicin, a first-line anticancer drug for osteosarcoma treatment, has been the subject of recent research exploring the mechanisms behind its chemoresistance and its ability to enhance cell migration at sublethal concentrations. Matrix metalloproteinase-2 (MMP-2), a type IV collagenase and zinc-dependent endopeptidase, is well-known for degrading the extracellular matrix and promoting cancer metastasis. Our previous work demonstrated that nuclear MMP-2 regulates ribosomal RNA transcription via histone clipping, thereby controlling gene expression. Additionally, MMP-2 activity is regulated by the non-receptor tyrosine kinase and oncogene, Src, which plays a crucial role in cell adhesion, invasion, and metastasis. Src kinase is primarily regulated by two endogenous inhibitors: C-terminal Src kinase (Csk) and Csk homologous kinase (CHK/MATK). AIM: In this study, we reveal that the MMP-2 gene acts as an upstream regulator of Src kinase activity by suppressing its endogenous inhibitor, CHK/MATK, in osteosarcoma cells. METHODS AND RESULTS: We show that enhanced osteosarcoma cell migration which is induced by sublethal concentrations of doxorubicin can be overcome by inactivating the MMP-2 gene or overexpressing CHK/MATK. Our findings highlight the MMP-2 gene as a promising additional target for combating cancer cell migration and metastasis. This is due to its role in suppressing on the gene and protein expression of the tumor suppressor CHK/MATK in osteosarcoma. CONCLUSION: By targeting the MMP-2 gene, we can potentially enhance the effectiveness of doxorubicin treatment and reduce chemoresistance in osteosarcoma.

16.
Acta Med Indones ; 55(3): 261-268, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37915157

RESUMO

BACKGROUND: There are correlations between tumor staging, lymph node involvement, and patient survival in Nasopharyngeal cancer (NPC) which is one of the most common types of cancer in Indonesia.  The inflammation process plays a role in tumor progression over the long term and this marked by increased proinflammatory cytokine and gene overexpression. This study aims to identify differentially expressed genes (DEGs) in NPC using T and N staging. METHODS: This is a cross-sectional study of NPC patients in Cipto Mangunkusumo, Jakarta, between 2018 and 2022. DEGs were identified based on the amount of mRNA detected on paraffin blocks with a 1.5- to -1.5-fold change and an adjusted p-value of <0.05. RESULTS: We included 48 subjects. The mean age of subjects was 47.75 (10.48) years, and most were male (77.1%). Non-keratinized squamous cell carcinoma was the most common histopathology type. Differences in the tumor size of the T4 and non-T4 in metastatic (33.3%) group when compared to the non-metastatic (37.5%) group were insignificant (p = 0.763). The proportion of N3 subjects in the metastatic vs non-metastatic group was different significantly (83.3% vs. 50%, p = 0.030). Gene expression analysis showed that C-X-C motif ligand 8 (CXCL8), matrix metalloproteinase-1 (MMP1), matrix metalloproteinase-1 (MMP2), and fibronectin-1 (FN1) genes of the T4 and non-T4 group to be different significantly. CONCLUSION: There was significant finding in the N3 subjects of the metastatic and non-metastatic groups. The DEGs of CXCL8, MMP1, MMP2, and FN1 were statistically significant in the T4 when compared to the non-T4 group.


Assuntos
Neoplasias Nasofaríngeas , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Neoplasias Nasofaríngeas/genética , Metaloproteinase 1 da Matriz/genética , Estudos Transversais , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Carcinoma Nasofaríngeo/genética , Expressão Gênica
17.
Front Nutr ; 10: 1221935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37876615

RESUMO

Tetrahydrocurcumin (THC) has been shown to possess anti-angiogenic activities. This study aims to investigate the effects of THC on adipose angiogenesis and expression of angiogenic factors that occurs in 60% high-fat diet-induced obese mice. Male ICR mice were randomly divided into 3 groups: mice fed with a low-fat diet (LFD group); mice fed with very high fat diet (VHFD group), and mice fed with VHFD supplemented with THC (300 mg/kg/day orally) (VHFD+THC treated group) for 6 weeks. Body weight (BW), food intake, fasting blood sugar (FBS), lipid profiles and visceral fats weight (VF) were measured. The microvascular density (MVD), TNF-α, VEGF, MMP-2, and MMP-9 expressions were evaluated. The VHFD group had significantly increased total cholesterol, triglyceride, food intake, BW, VF, VF/BW ratio, adipocyte size and the number of crown-liked structures as compared to LFD group. THC supplementation markedly reduced these parameters and adipocyte hypertrophy and inflammation in white adipose tissues. MVD, TNF-α, VEGF, MMP-2, and MMP-9 were over-expressed in the VHFD group. However, THC supplementation decreased MVD and reduced expression of TNF-α, VEGF, MMP-2, and MMP-9. In conclusion, THC suppressed angiogenesis in adipose tissue by the downregulation of TNF-α, VEGF, MMP-2, and MMP-9. With its effects on lipid metabolism as well as on food consumption, THC could contribute to lower visceral fat and body weight. Overall, our study demonstrated the potential benefit of THC in mitigating obesity and associated metabolic disorders along with elucidated the suppression of adipose angiogenesis as one of its underlying mechanisms.

18.
Front Immunol ; 14: 1233807, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753091

RESUMO

Background: C-reactive protein (CRP) levels are elevated in patients with abdominal aortic aneurysms (AAA). However, it has not been investigated whether CRP contributes to AAA pathogenesis. Methods: CRP deficient and wild type (WT) male mice were subjected to AAA induction via transient intra-aortic infusion of porcine pancreatic elastase. AAAs were monitored by in situ measurements of maximal infrarenal aortic external diameters immediately prior to and 14 days following elastase infusion. Key AAA pathologies were assessed by histochemical and immunohistochemical staining procedures. The influence of CRP deficiency on macrophage activation was evaluated in peritoneal macrophages in vitro. Results: CRP protein levels were higher in aneurysmal than that in non-aneurysmal aortas. Aneurysmal aortic dilation was markedly suppressed in CRP deficient (aortic diameter: 1.08 ± 0.11 mm) as compared to WT (1.21 ± 0.08 mm) mice on day 14 after elastase infusion. More medial elastin was retained in CRP deficient than in WT elastase-infused mice. Macrophage accumulation was significantly less in aneurysmal aorta from CRP deficient than that from WT mice. Matrix metalloproteinase 2 expression was also attenuated in CRP deficient as compared to WT aneurysmal aortas. CRP deficiency had no recognizable influence on medial smooth muscle loss, lymphocyte accumulation, aneurysmal angiogenesis, and matrix metalloproteinase 9 expression. In in vitro assays, mRNA levels for tumor necrosis factor α and cyclooxygenase 2 were reduced in lipopolysaccharide activated peritoneal macrophages from CRP deficient as compared to wild type mice. Conclusion: CRP deficiency suppressed experimental AAAs by attenuating aneurysmal elastin destruction, macrophage accumulation and matrix metalloproteinase 2 expression.


Assuntos
Aneurisma da Aorta Abdominal , Metaloproteinase 2 da Matriz , Humanos , Masculino , Animais , Camundongos , Suínos , Proteína C-Reativa/genética , Elastina , Aneurisma da Aorta Abdominal/induzido quimicamente , Aorta Abdominal
19.
Vascul Pharmacol ; 152: 107211, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37607602

RESUMO

INTRODUCTION: Increased matrix metalloproteinase (MMP)-2 activity contributes to increase vascular smooth muscle cell (VSMC) proliferation in the aorta in early hypertension by cleaving many proteins of the extracellular matrix. Cleaved products from type I collagen may activate focal adhesion kinases (FAK) that trigger migration and proliferation signals in VSMC. We therefore hypothesized that increased activity of MMP-2 proteolyzes type I collagen in aortas of hypertensive rats, and thereby, induces FAK activation, thus leading to increased VSMC proliferation and hypertrophic remodeling in early hypertension. METHODS: Male Sprague-Dawley rats were submitted to renovascular hypertension by the two kidney-one clip (2K1C) model and treated with doxycycline (30 mg/kg/day) by gavage from the third to seventh-day post-surgery. Controls were submitted to sham surgery. Systolic blood pressure (SBP) was measured daily by tail-cuff plethysmography and the aortas were processed for zymography and Western blot for MMP-2, pFAK/FAK, integrins and type I collagen. Mass spectrometry, morphological analysis and Ki67 immunofluorescence were also done to identify collagen changes and VSMC proliferation. A7r5 cells were stimulated with collagen and treated with the MMP inhibitors (doxycycline or ARP-100), and with the FAK inhibitor PND1186 for 24 h. Cells were lysed and evaluated by Western blot for pFAK/FAK. RESULTS: 2K1C rats developed elevated SBP in the first week as well as increased expression and activity of MMP-2 in the aorta (p < 0.05 vs. Sham). Treatment with doxycycline reduced both MMP activity and type I collagen proteolysis in aortas of 2K1C rats (p < 0.05). Increased pFAK/FAK and increased VSMC proliferation (p < 0.05 vs. Sham groups) were also seen in the aortas of 2K1C and doxycycline decreased both parameters (p < 0.05). Higher proliferation of VSMC contributed to hypertrophic remodeling as seen by increased media/lumen ratio and cross sectional area (p < 0.05 vs Sham groups). In cell culture, MMP-2 cleaves collagen, an effect reversed by MMP inhibitors (p < 0.05). Increased levels of pFAK/FAK were observed when collagen was added in the culture medium (p < 0.05 vs control) and MMP and FAK inhibitors reduced this effect. CONCLUSIONS: Increase in MMP-2 activity proteolyzes type I collagen in the aortas of 2K1C rats and contributes to activate FAK and induces VSMC proliferation during the initial phase of hypertension.


Assuntos
Hipertensão , Metaloproteinase 2 da Matriz , Animais , Masculino , Ratos , Aorta , Proliferação de Células , Colágeno Tipo I , Doxiciclina/farmacologia , Proteína-Tirosina Quinases de Adesão Focal , Inibidores de Metaloproteinases de Matriz/farmacologia , Músculo Liso Vascular , Proteólise , Ratos Sprague-Dawley
20.
Cancers (Basel) ; 15(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37444498

RESUMO

Glioblastoma multiforme (GB) and high-risk neuroblastoma (NB) are known to have poor therapeutic outcomes. As for most cancers, chemotherapy and radiotherapy are the current mainstay treatments for GB and NB. However, the known limitations of systemic toxicity, drug resistance, poor targeted delivery, and inability to access the blood-brain barrier (BBB), make these treatments less satisfactory. Other treatment options have been investigated in many studies in the literature, especially nutraceutical and naturopathic products, most of which have also been reported to be poorly effective against these cancer types. This necessitates the development of treatment strategies with the potential to cross the BBB and specifically target cancer cells. Compounds that target the endopeptidase, matrix metalloproteinase 2 (MMP-2), have been reported to offer therapeutic insights for GB and NB since MMP-2 is known to be over-expressed in these cancers and plays significant roles in such physiological processes as angiogenesis, metastasis, and cellular invasion. Chlorotoxin (CTX) is a promising 36-amino acid peptide isolated from the venom of the deathstalker scorpion, Leiurus quinquestriatus, demonstrating high selectivity and binding affinity to a broad-spectrum of cancers, especially GB and NB through specific molecular targets, including MMP-2. The favorable characteristics of nanoparticles (NPs) such as their small sizes, large surface area for active targeting, BBB permeability, etc. make CTX-functionalized NPs (CTX-NPs) promising diagnostic and therapeutic applications for addressing the many challenges associated with these cancers. CTX-NPs may function by improving diffusion through the BBB, enabling increased localization of chemotherapeutic and genotherapeutic drugs to diseased cells specifically, enhancing imaging modalities such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), optical imaging techniques, image-guided surgery, as well as improving the sensitization of radio-resistant cells to radiotherapy treatment. This review discusses the characteristics of GB and NB cancers, related treatment challenges as well as the potential of CTX and its functionalized NP formulations as targeting systems for diagnostic, therapeutic, and theranostic purposes. It also provides insights into the potential mechanisms through which CTX crosses the BBB to bind cancer cells and provides suggestions for the development and application of novel CTX-based formulations for the diagnosis and treatment of GB and NB in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...